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ABSTRACT: High viscous polycarbonate melt exhibits some special rheological characters different from generalized Newtonian fluid

during squeezing. It is necessary to evaluate whether the typical rheological models are suitable for polycarbonate squeeze. To avoid

the difficult of measuring the inner melt rheological behavior directly, this study presents a method of measuring the compressing

force applied on the upper disc of the rheometer to reveal the melt rheology indirectly. The finite difference method (FDM) was

employed to discretize the governing equations and constitutive equations established on cylinder coordinate system and to simulate the

compressing force. The experiments were carried out under four temperatures and three compressing velocities to test the validations of

Leonov, Phan-Thien–Tanner (PTT), eXtended Pom-Pom (XPP), and Cross Williams–Landel–Ferry (Cross-WLF) models. The experi-

mental results show the unique character of compressing force evolution as ‘steep—steady—steep—steady’ pattern. Comparison between

experiments and simulations reveals that both viscoelastic and viscous models can predict the two steady regions correctly, but only

viscoelastic models can simulate the steep increase and decrease of the compressing force. Among the evaluated viscoelastic models, XPP

is the most suitable to describe polycarbonate melt compression flow. VC 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42279.
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INTRODUCTION

Polycarbonates (PCs) are widely used in transparent industries

and most of them are manufactured by injection/compression

molding process. Yoon et al.1 found squeeze flow at compres-

sion molding reduces the orientation and thus enhances the

electrical conductivity. The conventional injection molding has

received extensive attention on constitutive models, governing

equations, and numerical methods. However, only a few works

concerned with squeeze flow can be found in literatures espe-

cially for PC. They involve rheological characters, boundary

conditions, and numerical methods.

Polymer melt is usually regarded as viscous fluid in squeezing,

and sometime is described as generalized Newtonian fluids for

small squeezing rates.2 Juang et al.3 found power-law model fits

well with experiments in low temperatures and Carreau model

is better for melt temperature above 175�C. Jackson4 studied

squeeze flow of thermoplastic (TP) at high temperature using

power-law model. The tests showed the power-law model

appears unsuitable for describing the TP viscosity at the very

low shear rates, and predicts too small TP thickness reduction

for 100–300 kPa pressures, but can be quite accurate for high

pressure and high aspect ratios.

However, Pham and Meinecke5,6 pointed out the squeezed melt

undergoes shear deformation at the solid–fluid interface and

biaxial extension flow in center region. Only after long squeez-

ing times, when the gap height ratio (R/H) is large, the melt

represents predominated shear flow. Only at this time does the

melt flow like a power-law fluid subject to a shear flow field.

Lee et al.7 showed that elasticity along with inertial effects can

become important during start-up of squeezing flow under cer-

tain conditions. Debbaut8 investigated the early development of

the squeeze flow for a finite amount of fluid material between

two infinite plates using finite element method. He found that

the squeezing force decreases with increasing elasticity. Laun9

established the relationship between recoverable strains in shear

and elongation and relaxation time spectrum of melt. He found

the linear viscoelastic model can describe the rubber-like behav-

ior at high deformation rate very well, and the single exponen-

tial damping function is very good approximation to the highly

branched low density polyethylene (LDPE) melt but poor to

linear polymers in the Non-Newtonian range. Sherwood10

pointed out lack of elasticity in constitutive model for squeeze

flow that may result in shear stress discrepancy although wall

sleep condition is used. Kim and Hyun11 designed an instru-

ment to measure rheological properties in superposes oscillatory
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shear and oscillatory squeeze flow. They found that the normal

stress of dynamic helical squeeze flow was hardly influenced by

the superposition, the storage and loss moduli showed nonlin-

ear behavior at much lower strain amplitude compared with

oscillatory shear flow. Similarly, Cheneler and coworkers12,13

designed a micro squeeze flow rheometer to measure the rheo-

logical behavior of viscoelastic fluid of nano-liter volumes.

Some researchers focused on boundary conditions for squeeze

flow during establishing theoretical model. Newtonian and

power-law models for squeeze flow with a partial wall slip were

reported by Laun et al.14 and Fang et al.15 Their numerical

results indicated that the degree of wall slip became more signif-

icant as the mold walls got closer, and the slip velocity at the

plate increased linearly with the radius up to the rim slip veloc-

ity. This phenomenon was also examined by Yang and Zhu16

for squeeze flow of Bingham fluid with Navier slip condition.

The investigation showed that larger slip coefficient produces

smaller squeeze force and larger viscosity yields larger squeeze

force. Debbaut and Thomas17 employed multi-mode Giesekus

model to predict the periodic force in an oscillatory squeeze

flow. They found that inertia correction becomes significant by

10 Hz and is dominant by 100 Hz, and the force for full-slip

squeeze-flow is found to be some 200 times smaller than with

no-slip. Karapetsas and Tsamopoulos18 examined the transient

squeeze flow of a viscoplastic material between two parallel

coaxial discs with mixed finite element method. The study indi-

cated slip condition on the surface of the discs affects the flow

field only locally, and the size of the unyielded area decreases

significantly as the length of the slip region increases.

Up to now, power-law, Giesecus, Maxwell, and Carreau models

for squeezing flow have received considerable consideration.19

The widely used viscoelastic models such as Leonov,20 PTT,21,22

and XPP23 were seldom investigated. Meanwhile, the well-

known viscous model, Cross-WLF,24 which characterized the

shear viscosity of PC well25,26 was rarely explored for squeeze

flow either. Whether they are fit to describe the squeeze rheo-

logical behavior have not been evaluated especially for PC. So,

we restrict the discussion to the evaluation of these models and

find out which one is the most suitable to describe the rheologi-

cal behavior of polycarbonate squeeze. The squeeze flow model

was first established in cylindrical coordinate system with both

viscous and viscoelastic models. Then using FDM to simulate

flow evolution and predict the compressing force. Finally, the

squeeze experiments were carried out to verify the validation of

each constitutive model.

SQUEEZE FLOW MODEL

The squeeze flow occurring in between two parallel discs is

schematically illustrated in Figure 1. The fluid is compressed

and squeezed in between two parallel discs with radius R within

the confined time-dependent gap, h(t), either upon the applica-

tion of a constant force (parallel plate plastometer) or a cross-

head moving at a constant velocity ( _h). The melt flow is limited

within the geometric region: 0 � r � R and 0 � z � h tð Þ.
Squeeze flows are due to the changing geometry, inherently

transient, and inhomogeneous flows.

Governing Equations

The melt flow within the two discs is axisymmetric, if the gravi-

tational and inertial effects neglected the governing equations

for mass and momentum conservation can be written in cylin-

drical coordinates as
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where r and z are the radial and axial coordinates, respectively,

vr and vz are the corresponding velocity components, p is the

pressure, and rrr , rrz , and rzz are the stress components.

Boundary Conditions

During squeezing the container keeps open, therefore the pres-

sure at the disc rim can be assumed zero.

p50 at r5R (4)

The flow at the interface between disc and melt is usually gov-

erned by slip boundary conditions for generalized Newtonian or

low viscous fluid.14–17 However, the polycarbonate melt is high

viscous fluid, it is hard to slip on the wall under low compress-

ing velocity. So the no slip boundary conditions for radial

velocity are used on both top and bottom discs.

vr50; vz50 at z50 (5)

vr50; vz5 _h at z5h (6)

Constitutive Equations

For a viscoelastic fluid the stress tensor is expressed as a sum of

Newtonian and viscoelastic components:

r5ss1sv (7)

here sv is the extra stress tensor due to viscoelasticity and ss is

the stress component of a Newtonian fluid given by

ss52gs _c; _c5 rv1rvT
� �

=2 (8)

The extra stress tensor is the sum of different modes

Figure 1. Inner structure of compression part of ARES G2 rheometer.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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sv5
X

i
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where the stress contribution of the ith mode is given by an

appropriate constitutive equation. If the PTT model is applied,

the constitutive equation is given by

11
kiE
gi

tr sið Þ
� �

si1kisri52gi _c vð Þ (10)

here E is the nonlinear parameter, finite value of E eliminates

singularity in extensional viscosity,27 tr sið Þis the trace of the

viscoelastic tensor si, and ki and gi are the relaxation time and

viscosity of ith mode. In eq. (10) the upper convective deriva-

ture is defined as
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r
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1v � rsi2rv � si2si � rvð ÞT (11)

The constitutive equation, eq. (10), for XPP model should be

modified as below
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In the above equations, Gi is the relaxation modulus, kb;i is the

relaxation time of the backbone, ks;i is the relaxation time of qi

arms for the ith mode, ai is a scalar parameter to control the

level of anisotropy, Ki is the backbone tube stretch defined as

the length of the backbone tube divided by the length at equi-

librium, and ti is a parameter denoting the influence of the sur-

rounding polymer chains on the backbone tube stretch.

If Leonov model is applied the constitutive equation should be

expressed by strain tensor as follow

s52gss _c1
X

i

gi

ki

Ci (15)

with

Ci

!

1
1

2ki

Ci � Ci2Ið Þ50; det Ci51 (16)

where Ci is the Finger strain tensor of the ith mode, s is the

rheological constant, and gs is the viscosity corresponding to

Newtonian fluid and defined as

gs �
X

i

gi

12s
(17)

This formula indicates the Newtonian effects s52gss _c5 2
1=s21P

i gi _c closely depend on the parameter s.

If the elasticity of polymer melt is neglected, the widely used

Cross-WLF is the most suitable viscous model

g _c;T ; pð Þ5 g0 T ; pð Þ

11
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n o12n (18)
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where, n is the power-law index, s� is the shear stress level of

the asymptotic transition region between the power-law and

Newtonian fluids, and A1, ~A2, and Di i51; 2; 3ð Þ are material

parameters.

NUMERICAL METHOD

In this study, the upper disc keeps constant compressing veloc-

ity, vz5 _h5 dH
dt
� const , thus all the axial velocity vz at the same

level is equal, which indicates @vz

@r
50. Therefore, substitute eqs.

(7–9) into eqs. (2) and (3) yields
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For Leonov model, the stress component si in eqs. (20) and

(21) needs to be replaced by
gi

ki
Ci.

The FDM is employed to determine the numerical solution

because the polymer flow is restricted within a rectangle region

0 � r � R; h � z � H , which is suitable for FDM calculation.

To keep the numerical consistence and stability, the forward dif-

ference and central difference schemes are used to discretize the

one order and two order differential terms, respectively, and the

‘up-wind’ scheme is used to discretize the convect term in con-

stitutive equation. The differential equations corresponding to

mass conservative equation [eq. (1)], momentum equations

[eqs. (20) and (21)], and constitutive equation [eq. (10)] are

discretized as
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Combining the above equations subject to boundary conditions

[eqs. (4) and (5)] will form the algebraic equations about the

unknown pressure pn
ij , velocity vn

ij, and stress sn
k . As the stress

trace tr sn
k

� �
is also unknown, the above algebraic equation is

nonlinear and the Newton-Raphson iterative method is used to

determine the final solution.

When the unknown variables are determined at every node with

above scheme, summate the vertical force at every node of

upper disc by the following scheme

Fjk5 pjk1
XM
i51

si;rz1si;zz

� �
jk

" #
(26)

Then integrate the discrete force Fjk with bilinear interpolation

scheme to get the compressing force imposed on the upper

disc.

N5

ð ð
Ajk

Fjk r; zð ÞdA (27)

For XPP model, the numerical method is similar to PTT except

the nonlinear term discretization. For Leonov model, the

unknown variable sn
k needs replaced by strain tensor Cn

k and

subject to additional constraint [eq. (16)].

There are quantitative literatures involved viscous flow simula-

tion and presented good results. Here, we use the conventional

method purposed by Chang et al.28 to determine pressure and

velocity during squeezing for viscous model.

RESULTS AND DISCUSSION

The experiments were carried out in ARES G2 rheometer of TA

Instruments. In this instrument, the upper and lower circular

discs (denoted as a and b) are coaxial with same diameter of

25 mm and fixed on the axis c, and the force signal of disc a is

collected by the sensor d and displayed on monitor f through

A/D converter during compression, see Figure 1. The measured

force profile will be used to test the validity of rheological

model. In this study, the constant contact area compression

mode is applied, so the PC melt is always fully filled within the

gap between the two discs. The compression starts from

1.43 mm and stops at 1.0 mm when the external force is

removed. During experimenting, the lower disc b is fixed and

the upper disc a moves down at constant velocity following

with some melt flowing out of the gap. To keep PC melt from

absorbing air water, the nitrogen is sweeping the discs

constantly.

The rotating rheological experiments were carried out at melt

temperatures of 270�C, 280�C, 290�C, and 300�C to get the cor-

responding relaxation times and moduli listed in Table I. Then

using the experimental data to fit the constants of Cross-WLF

model as listed in Table II. The squeezing experiments were

conducted at four temperatures with compressing speed

0.01 mm/s. These experimental data are used to fit the nonlin-

ear constants in viscoelastic models such as s in Leonov, E in

PTT, and qi, ri, ai in XPP model by trial and error. The fitted

constants for Leonov, PTT, and XPP models are summarized in

Table III. The validation of the models determined by this

method were verified with squeezing experimental results under

compressing velocity 0.005 mm/s and 0.02 mm/s at the above

four temperatures.

Numerical results were obtained with FDM as depicted in the

numerical method section. The velocity, pressure, stress corre-

sponding to different models are determined by solving eqs.

(22–26) subjecting to the corresponding boundary conditions.

Then integrate the discrete pressure and stress components on z

Table I. Rheological Parameters of 4-Order Viscoelastic Models Measured by Rotating Rheological Experiments

270�C 280�C 290�C 300�C

Relaxation
time ki (s)

Modulus
Gi (Pa)

Relaxation
time ki (s)

Modulus
Gi (Pa)

Relaxation
time ki (s)

Modulus
Gi (Pa)

Relaxation
time ki (s)

Modulus
Gi (Pa)

5.02923 76.5606 4.73195 51.3094 4.15657 46.913 3.0891 40.0322

0.583092 70.8121 0.22218 108.292 0.41924 50.135 0.363904 42.1809

5.56E-03 81150 9.529E-3 17602.6 5.59E-03 20158.2 8.9702E-3 2983.95

8.56E-04 494619 9.05E-4 398497 6.77E-04 381588 5.8332E-4 218261

Table II. Constants of Cross_WLX Model Fitted with the Results of Rotat-

ing Rheological Experiments

N s* (Pa) D1 (Pa.s) D2

D3

(K/Pa) A1 A2 (K)

0.219 172770 5.24E114 380.15 0 37.789 51.6

Table III. Constants of Viscoelastic Models Obtained by Best Fitting

Squeeze Force

Leonov PTT XPP

S � qi ri ai

0.00855 0.425 20 2.1 0.8

2 1.5 0.7

1 1.6 0.3

1 7 0.3

AQ14
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direction to get compressing force via formula (27) so as to

compare with experimental data.

Temperature Effects

Rheological properties such as viscosity, relaxation time closely

depend on temperature. It is necessary to verify the models at

different temperatures. Figures 2–5 show the measured com-

pressing force at four temperatures increases sharply in start-up

stage, then rises steadily to peak value. When the external force

imposed on the upper disc withdraws, the compressing force

starts to relax. It decreases steeply from the peak to inflexion

within 3�5 s, then goes down slowly to zero. This kind of

changing pattern represented by ‘steep—steady—steep—steady’

can be attributed to the viscoelasticity of polycarbonate melt. In

the early compressing stage, the melt elasticity transfers from

the top layer to the bottom within short time, leading resistance

rising dramatically. In the relaxation stage, the force changes in

the opposite direction as the result of the melt elasticity falling

down quickly from top to bottom. As the stress in viscous

model depends on temperature, shear rate, and pressure, and

these variables changes smoothly during compressing, so this

kind of model cannot predict the sharp increase and decrease

change. On the contrary, there exist nonlinear constants in

viscoelastic models, which offer the opportunity to adjust the

value to better fit the experimental profile. Moreover, time

dependent viscoelastic model can store the compressing energy,

which leads the simulated force still rises 0.8�1.2 s after the

external force removed rather than decrease at once as viscous

model does. So, all the viscoelastic models can predict this force

changing pattern correctly, while the viscous model cannot fore-

cast the sharp increase and decrease of compressing force as

indicated in Figures 2–5. On the other hand, the melt elasticity

decreases as temperature increases, the viscosity plays domi-

nated role for squeezing with high melt temperature, which

leads the gross simulated error of viscous model decreases from

Figure 2. Comparison between experimental data and simulated results at

compressing velocity 0.01 mm/s and melt temperature 270�C. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

Figure 3. Comparison between experimental data and simulated results at

compressing velocity 0.01 mm/s and melt temperature 280�C. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

Figure 4. Comparison between experimental data and simulated results at

compressing velocity 0.01 mm/s and melt temperature 290�C. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

Figure 5. Comparison between experimental data and simulated results at

compressing velocity 0.01 mm/s and melt temperature 300�C. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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0.2043 at 270�C to 0.0434 at 300�C improved almost four

times, see Table IV.

Although all the three viscoelastic models can correctly charac-

terize the PC melt squeeze rheology, the simulated precisions

are different. In Leonov model, the stress linearly depends on

strain, so its simulated stress cannot increase or decrease

abruptly which results in the simulated compressing force less

fitting the experimental data in the two ‘steep’ regions with

average error 0.145N higher than other two. However, it works

better in the ‘steady’ regions than other two viscoelastic mod-

els as the strain varies smoothly in those regions. As 270�C is

approach to the margin of processing temperature, the melt

flow is not as smooth as the high temperature melt, after 32 s

the measured data starts vibrating and goes up more quickly

to the peak value. This character can hardly be captured with

ordinary linear model. The PTT model, however, has an addi-

tional parameter E in the nonlinear item to account for the

extension effect, so its numerical solution can better approxi-

mate to the experimental data in this region, see Figure 2. As

there exist 12 parameters in XPP model, which offers more

opportunities to control the stress rising or declining rate,

nonlinear degree, and elastic effect, so both error and variance

indicate XPP model is the best one to characterize the PC

melt rheological behavior during squeezing, as illustrated in

Figures 2–5 and Table IV.

The nonlinear parameters in viscoelastic models have significant

effects on the simulated results. These fitted constants do not

vary with temperature, shear rate, and squeezing velocity, so

they have different effects on different stages. When the squeeze

begins the melt flow starts from upper and gradually transfers

to bottom, which indicates the melt flow is restricted within

small portion of the gap at the beginning of squeeze, thus the

corresponding shear rate is much larger than the following

squeeze. Meanwhile, at the end of squeeze the gap becomes

much small, but the compressing velocity is same as before, so

the shear rate is larger too. Since the constant s in Leonov

model represents Newtonian effects dominates for small shear

rate, the simulated results in Figures 2–5 shows fair agreement

with experimental data of middle squeezing stage and not well

for the beginning and end stages. The constant E in PTT model

represents the extension effect which plays obvious role at the

beginning squeezing stage, so PTT model can simulate the

abrupt increase of compressing force at the onset of squeeze.

The nonlinear parameters ai in XPP model play the similar role

as E in PTT, but more options for these constants makes XPP

fit better to experimental data than PTT on the whole.

Compressing Velocity Effects

After the viscoelastic model was established with the parameters

obtained under compressing velocity of 0.01 mm/s at four melt

temperatures, it needs to be verified with other process

Table IV. Average Errors and Variances of the Simulated Results from Different Models

Average error/N Variance

Temp. Leonov PTT XPP Viscous Leonov PTT XPP Viscous

270�C 0.1474 0.1587 0.1285 0.2043 0.02292 0.07842 0.00887 0.0292

280�C 0.0805 0.0989 0.0743 0.1508 0.00701 0.00301 0.00696 0.0145

290�C 0.0548 0.0391 0.0377 0.0557 0.00728 0.00146 0.00101 0.0113

300�C 0.0375 0.0374 0.0314 0.0434 0.00382 0.00099 0.00081 0.0032

Figure 6. Comparison between experimental data and simulated results at

compressing velocity 0.005 mm/s and melt temperature 300�C. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

Figure 7. Comparison between experimental data and simulated results at

compressing velocity 0.02 mm/s and melt temperature 300�C. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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conditions. When the temperature changes, the new rheological

parameters such as relaxation time and modulus can be deter-

mined with time–temperature equivalent formula, for example,

WLF equation. This approach has been proved to be effective

both for viscous model and viscoelastic model. Therefore, cur-

rent study mainly focuses on investigating whether the estab-

lished models are suitable for different compressing velocities.

Here, the experiments with compressing velocity of 0.02 and

0.005 mm/s were performed so as to compare with numerical

simulations. Because both experiments and simulations show

the similar changing for other temperatures, we just illustrate

the rheological behavior at 300�C.

Figures 5–7 shows the compressing force profile corresponding

to 0.01 mm/s is the more smooth than the other two. The

measured compressing force for 0.005 mm/s vibrates during

squeezing, whereas there exist a big inflexion around 12 s for

0.02 mm/s. These results indicate that too slow or too quick

compression is not suitable for polycarbonate melt compressing.

Figures 6 and 7 shows both viscous and viscoelastic models can

simulate the gross change of compressing force, but viscoelastic

model can predict the detailed variation due to the reasons

mentioned above. The gross error and variance of XPP model

are less than that of Leonov and PTT models, see Table V,

implies it is better than the other two viscoelastic models again.

Edge Effect

In this study, the zero pressure is assumed at edge r5R as indi-

cates in eq. (4). This is reasonable at early squeezing stage as

only a few polymer melt flows out which cannot accumulates

outside the discs. When the squeeze continuous, more melt

hangs off and resists the flows, the edge pressure is little high

than zero pressure which can affect the normal force applied on

the upper disc. Usually this happens when the upper disc gets

very close to down disc. At that time the melt flow can be

regarded as shear flow as illustrated by Pham and Meinecke.5

Applying Hele-Shaw model to squeezing governing equations

[eqs. (1–3)], the pressure inside the gap can be derived

p rð Þ5pjr5R1
H R22r2ð Þ _h

4Mg
ðh

0

1

g
dz

with M5

ðh

0

z2

2g
dz2

ðh

0

z

g
dzðh

0

1

g
dz

ðh

0

z

g
dz

(28)

Detail derivation about this formula can be found in appendix

A. If the viscosity g is replaced by the average viscosity �g the

formula reduces to

p rð Þ5pjr5R1
3�g R22r2ð Þ

h3
_h (29)

When the melt accumulates at the edge of the disc, it resists the

melt flow and decreases the shear rate, which increases viscosity

�g. The two terms in the right side of formula (29) are larger

than that of zero boundary condition if the edge effect is taken

into consideration. Thus, the corresponding simulated pressure

and its determined upper disc force will increase.

Figure 2 clearly shows the edge effect of viscous model. The

simulated forces are smaller than the measured values during

the period of 35 s and 40 s because the zero boundary condi-

tion is set in this study. Edge effect is not obvious in Figure 3

as the simulated value is conformably smaller than the experi-

ment data. When melt temperature increases, the viscosity

decreases and fluidity increases which leads little melt can accu-

mulates outside the discs, so the edge effect has little influence

on final flow of melt temperatures of 290�C and 300�C as indi-

cated in Figures 4 and 5. However, it recovers for compressing

velocity of 0.02 mm/s at melt temperature 300�C, see Figure 7,

as fast flow leads more melt piles outside discs in short time.

CONCLUSION

This study provides a numerical approach to verify the valida-

tion of typical constitutive models. The mathematical model for

polycarbonate melt squeeze is established in term of incompres-

sible, viscous or viscoelastic flow in cylinder coordinate system.

The FDM is employed to determine the pressure, velocity, and

stress in the flow region both for compressing and relaxing

stages. The simulated resistant force is obtained by integration

of melt pressure and stress at top layer and is used to compare

with experimental compressing force. Some special characters

from the experimental and simulating results can be summar-

ized as:

1. Due to the viscoelasticity of PC melt the compressing force

changes following the pattern of steep—steady—steep—

steady rather than the smooth change for generalized New-

tonian fluid.

2. The viscous model can predict the compressing force for

steady regions but fail to steep regions. If the edge effect is

applied, the simulated precision for final compressing will

be significantly improved.

3. Viscoelastic model can simulate the force variation well in

the whole process if the compressing velocity and melt tem-

perature are correctly specified. Among the evaluated visco-

elastic models the XPP model is the most suitable one.

Table V. Average Errors and Variances of the Simulated Results Under Different Compressing Velocities

Average error/N Variance

Velocity/mm/s Leonov PTT XPP Viscous Leonov PTT XPP Viscous

0.005 0.0475 0.0528 0.0426 0.0645 0.00081 0.00051 0.00078 0.0049

0.01 0.0375 0.0374 0.0314 0.0434 0.00382 0.00099 0.00081 0.0032

0.02 0.1074 0.1007 0.0759 0.1343 0.01605 0.01525 0.00379 0.0253
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4. The abnormal growth appearing in the profiles of 0.005,

0.02 mm/s compressing velocities and 270�C melt tempera-

tures indicates too slow or quick compression or low tem-

perature is not suitable for PC squeeze.
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APPENDIX

For thin shear flow, the pressure change on thickness direction

can be ignored according to Hele-Shaw theory. The thickness

velocity component vz of each layer keeps constant on radius

direction for squeeze flow. Thus the governing equations [eqs.

(2) and (3)] for thin squeeze flow can be reduced to

2
@p

@r
1
@

@z
g
@vr

@z

� �
50 (A1)

@

@z
g
@vz

@z

� �
50 (A2)

Double integration on r and z directions respectively subject to

boundary conditions yields

vr5

ðz

0

z0

g
dz 02

ðh

0

z0

g
dz 0ðh

0

1

g
dz 0

ðz

0

1

g
dz 0

2
6664

3
7775 @p
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(A3)

vz5

ðz

0

1

g
dz 0ðh

0

1

g
dz 0

_h (A4)

Substitute the two formulae into mass conservative equation

[eq. (1)] yields
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Average the equation on thickness direction

1
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(A6)

Double integration on r direction again yields the formula of

pressure

p rð Þ5pjr5R1
H R22r2ð Þ _h

4Mg
ðh

0

1

g
dz

(A7)
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